Math 3360 - Foundations of Algebra I: Problem Sheet 1

1. In each of the following cases, sketch an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) f is surjective but not injective.
(b) f is injective but not surjective.
(c) f is both surjective and injective.
(d) f is neither surjective nor injective.
2. Determine whether the following functions are one-to-one and/or onto. If the function is invertible find its inverse.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+5$.
(b) $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$given by $f(x)=\frac{1}{x}$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}-4$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=|x+1|$.
3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Prove that if both f and g are invertible then $g \circ f$ is invertible with $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(Note: do not assume that $g \circ f$ is one-to-one or onto.)
